Aspects of the Noisy Burgers Equation

نویسنده

  • Hans Fogedby
چکیده

The noisy Burgers equation describing for example the growth of an interface subject to noise is one of the simplest model governing an intrinsically nonequilibrium problem. In one dimension this equation is analyzed by means of the MartinSiggia-Rose technique. In a canonical formulation the morphology and scaling behavior are accessed by a principle of least action in the weak noise limit. The growth morphology is characterized by a dilute gas of nonlinear soliton modes with gapless dispersion law E ∝ p and a superposed gas of diffusive modes with a gap. The scaling exponents and a heuristic expression for the scaling function follow from a spectral representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Continuum Limit, Galilean Invariance, and Solitons in the Quantum Equivalent of the Noisy Burgers Equation.

A continuum limit of the non-Hermitian spin-1/2 chain, conjectured recently to belong to the universality class of the noisy Burgers or, equivalently, Kardar-Parisi-Zhang equation, is obtained and analyzed. The Galilean in-variance of the Burgers equation is explicitly realized in the operator algebra. In the quasi-classical limit we nd nonlinear soliton excitations exhibiting the ! / k z dispe...

متن کامل

Shock Structures and Velocity Fluctuations in the Noisy Burgers and KdV-Burgers Equations

Statistical properties of the noisy Burgers and KdV-Burgers equations are numerically studied. It is found that shock-like structures appear in the timeaveraged patterns for the case of stepwise fixed boundary conditions. Our results show that the shock structure for the noisy KdV-Burgers equation has an oscillating tail, even for the time averaged pattern. Also, we find that the width of the s...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998